
Parkour: A Parking Sharing System
Final Report

Team number: sddec20_20

Client/Advisor: Ahmed Kamal

Team members:
Jeremy Galang

Lorenzo Zenitsky
Ethan McGill

Gabrielle Johnston
Jason Neville
Jorden Lee

Team Email: sddec20-20@iastate.edu

Team Website: http://sddec20-20.sd.ece.iastate.edu/

0

Table of Contents
Table of Contents 1

List of figures 3

List of Tables 4

Executive Summary 5
Development Standards & Practices Used 5
Summary of Requirements 5
Applicable Courses from Iowa State University Curriculum 5
New Skills/Knowledge acquired that was not taught in courses 6

1 Introduction 7
1.1 Acknowledgment 7
1.2 Problem and Project Statement 7
1.3 Operational Environment 7
1.4 Requirements 7

1.4.1 Functional Requirements 8
1.4.2 Nonfunctional Requirements 8
1.4.3 Engineering Constraints 8

1.5 Intended Users and Uses 9
1.6 Assumptions and Limitations 9

1.6.1 Assumptions 9
1.6.2 Limitations 10

1.7 Expected End Product and Deliverables 10
1.7.1 Frontend Deliverables 10
1.7.2 Backend Deliverables 11

2 Specifications and Analysis 12
2.1 Proposed Approach 12
2.2 Design Analysis 12

2.2.1 Frontend 12
2.2.2 Backend 12

2.3 Development Process 13
2.4 Conceptual Sketch 13

3 Statement of Work 22
3.1 Previous Work and Literature 22
3.2 Technology Considerations 22
3.3 Task Decomposition 22

3.3.1 Frontend Tasks 22
3.3.2 Backend Tasks 24

sddec20-20 1

3.3.3 Administrative/Misc Tasks 24
3.4 Possible Risks and Risk Management 25
3.5 Project Proposed Milestones and Evaluation Criteria 26
3.6 Project Tracking Procedures 27
3.7 Expected Results and Validation 27

4 Project Timeline, Estimated Resources, and Challenges 28
4.1 Project Timeline 28
4.2 Feasibility Assessment 29
4.3 Personnel Effort Requirements 29
4.4 Other Resource Requirements 30
4.5 Financial Requirements 30

5 Testing and Implementation 32
5.1 Interface Specifications 32
5.2 Hardware and software 32
5.3 Functional Testing 32

5.3.1 Frontend 32
5.3.2 Backend 32

5.4 Non-Functional Testing 32
5.4.1 Frontend 32
5.4.2 Backend 32

5.5 Process 33
5.6 Results 34

6 Closing Material 35
6.1 Conclusion 35
6.2 References 35
6.3 Appendices 36
6.3.1 Operations Manual 36
6.2 Alternative/other initial versions of the design 39
6.3 Other considerations 39

sddec20-20 2

List of figures

List of Tables

sddec20-20 3

Figure 1 Entry Screen 15

Figure 2 Sign-up Screen 15

Figure 3 Sign-in Screen 15

Figure 4 Initial Map Screen 16

Figure 5 Drawer Content for Driver User 16

Figure 6 Profile Screen 17

Figure 7 Edit Profile Screen 17

Figure 8 My Vehicles Screen 18

Figure 9 Edit Screen for My Vehicles 18

Figure 10 Add Vehicle Screen for My Vehicles 18

Figure 11 Add Card Screen for My Wallet 19

Figure 12 Entry Screen for My Wallet 19

Figure 13 Listing Screen for Host 20

Figure 14 Drawer Content for Host User 20

Figure 15 New Listing Screen for Host 21

Figure 16 Screen for All Listings 21

Figure 17 Map Screen Post-Search 22

Figure 18 Gantt Chart for Schedule 29

Figure 19 Testing Plan 34

Table 1 Proposed milestones 18-19

Table 2 Personnel Effort Requirements 21-23

Executive Summary

Development Standards & Practices Used
● Agile project development
● IEEE 802.11 Wireless Internet Standard
● IEEE 802.21 Cellular Data Standard
● Open Source License(s)

○ The software that we use must be allowed for commercial use, as we are making
a closed source project that will be released to the public.

● Mozilla Development Network Javascript Standards

Summary of Requirements
● Our application will require a dedicated frontend and backend that supports both iOS

and Android applications.
● A platform will be needed that can host our server 24/7 once the application is up and

running.
● The application will need to be published on the Google Play and Apple App Store so

that anyone can use our app.

Applicable Courses from Iowa State University Curriculum
● COMS 227 + 228 (Object-Oriented Programming and Data Structures)

○ Knowledge of object-oriented programming and data structures are essential and
will be utilized.

● COMS 252 (Linux Operating Systems)
○ Useful for setting up the VMs and hypervisor on our server.

● COMS 309 (Software Development)
○ Knowing how to research unfamiliar technologies would be very applicable to this

project.
○ Utilizing Agile development practices.

● COMS 311 (Algorithms)
○ Knowledge of algorithms would be beneficial for our application’s performance.

● SE 319 (Construction of User Interfaces)
○ Teaches the basics of how to design an attractive and usable user interface

through a variety of languages and tools.
● COMS 362 (Object-Oriented Analysis and Design)

○ Some project management techniques would be useful such as CRC cards and
knowledge of UML. This would be helpful for planning.

● COMS 363 (Introduction to Database Management Systems)
○ Gained experience with SQL and other databases. It will be useful as we

develop our database and backend system.

sddec20-20 4

New Skills/Knowledge acquired that was not taught in courses
● How to build an application using MERN stack (MongoDB, Express, React Native, and

NodeJS)
● Exposure to web development for mobile applications
● How to create a backend server with API endpoints using NodeJS
● Connect and use MongoDB as a database
● How to research and utilize different packages and APIs that will be used throughout the

application

sddec20-20 5

1 Introduction

1.1 Acknowledgment
Outside of our own team members, Dr. Ahmed Kamal, the client who proposed this project, has
been and will continue to be, a significant contributor to the overall lifecycle of the project.

1.2 Problem and Project Statement
The problem that our project hopes to solve is finding parking. In large events, such as football
games or the Iowa State Fair, designated parking can be limited, expensive, and overall a
hassle.

The Parking Sharing System aims to provide an alternative for finding parking at busy events or
locations. This application will enable two kinds of users: to either find parking spaces, or host
parking spaces. The host will be able to post a parking spot to the application. They will provide
an address, number of spaces available, time slots, and a price for that time. The guest will be
able to search through the existing posts to find a spot close to the event they want to go
through. All transactions will be processed through Stripe. Similar to ridesharing apps such as
Uber and Lyft, this application is crowdsourced and will heavily rely on individuals willing to use
the application to host parking spots, as well as individuals willing to use the application to find
and reserve the listed parking spots. We plan to create an application that makes event parking
easier, cheaper, and an overall better client experience. Because of the parking sharing idea,
this application will be environmentally friendly, saving on fuel consumption.

1.3 Operational Environment
The backend server application will live on a publicly hosted server, so the frontend application
can connect. The frontend application will be available through the Apple App Store, and the
GooglePlay Store, so it will reside on both Android and iOS devices.

Physically, the application will function at its best in large cities or local events such as concerts,
football games, etc. It is not limited to specific events and large cities, but it is available
wherever users can host and need to find additional parking. The application will need a large
user base to make it viable. Urban and suburban areas are suitable areas because there are
ample people to use the application, list their properties, and to reserve the listed spots.

1.4 Requirements
The application will depend on two types of users:

● Individuals or groups who are willing to host parking spaces
● Individuals looking for parking spaces

sddec20-20 6

1.4.1 Functional Requirements
● Host User:

○ Have access to a list of reservations that contains the following information:
■ Guest Information
■ Reservation Time slot(s)
■ Vehicle license plate numbers and models

○ Handle payment between guests through Stripe APIs and endpoints
○ Provide a listing of their property with location and descriptions
○ Manage reservations

● Guest User:
○ Create an account that allows them to reserve parking spots
○ Securely send a payment to the host through Stripe API
○ Be able to receive information about the host’s location, price, time-slots, and

number of available spots
■ Based on selected location within a 10-mile radius

● Both Users:
○ Log into their account on the application
○ Access a list of available parking spots
○ View the available listings with their respective locations

1.4.2 Nonfunctional Requirements
● Intuitive and simple user interface
● Application feels responsive
● Allow users to update their public profile page easily
● Users should be able to add information about the location they are hosting
● Web browser application port
● Each payment should be documented with a corresponding log and receipt through

Stripe
● The application makes API requests quickly

1.4.3 Engineering Constraints
● COVID-19 will have an impact on many aspects of our project. The following lists each

area and why COVID affects it:
○ Face-to-face meetings

■ Meetings with our client/advisor cannot happen, as most of our group
members are not on campus or in the area. For health and safety
reasons, we cannot meet physically in person to talk about design and
development decisions. We will have to meet through some online
platform, such as Zoom or Webex.

■ Group meetings will need to be done remotely, and we will need to each
locally work on our tasks using Gitlab for version control. Everyone will

sddec20-20 7

have to set up their environment and ensure that it works as intended on
their local machines.

○ User Testing
■ Our plan was to test our application with users attending events at Iowa

State. We were hoping to test the scalability of our application to test our
frontend and backend, but some events were canceled at the start of the
school year. To combat this, we have decided to resort to extensive
testing by using Jest, an automated test framework. Manual testing will be
performed as well.

○ App Publication + Costs
■ Since our application needs to be posted on the Google Play or Apple

App Store, we are not sure if COVID-19 will delay any approval processes
for our application.

■ Financially, we are unsure if the University will be limiting our finances
due to the potential costs we may incur resulting from server needs or
publication fees.

1.5 Intended Users and Uses
The intended users include, but are not limited to individuals who are:

● Guests seeking parking spaces
● Hosts willing to rent out parking spaces on their property

The intended use for the application is to provide additional parking spots during events such as
visiting a city, going to work, attending a concert, or cheering at a football game. The guest
wanting to attend the said event could easily pull up the app and find a nearby host so they
could park nearby. The host would be able to make money by hosting their property at the
event.

1.6 Assumptions and Limitations

1.6.1 Assumptions
● User (both hosts and guests) has the application downloaded on either an iOS or

Android device
● Users might want to access the application on the web
● Strong network/internet connection

○ Users will have a working network and/or internet connection so they may
properly use the features of the application.

● Strong user-base of guests and hosts
○ There will be a plethora of guests and hosts in areas of high traffic so that a user

may get the most out of the application. This app will be most useful in areas with
many people and where parking is an issue, like sporting events, concerts, etc.

sddec20-20 8

Individuals in more rural areas with less traffic are assumed to not have as many
parking difficulties as those in cities and other highly populated areas.

● Guests have a sustainable payment system set up with the app to pay hosts for parking
on their property through a supported payment option in Stripe.

● The host is legally entitled to use, lease, or sublease the parking spot(s)
● Both guests and hosts have read and agreed to the various terms and conditions of the

application and all they entail.

1.6.2 Limitations
● Regional support

○ The more popular parking apps tend to serve only a specific state or region of the
US whereas a majority of the parking apps akin to what we are trying to build
tend to try and support all users from any location. More often than not, a user
will download a residential parking app only to find out that it features little to no
support in their area because they may not live in a busy and well-populated city
like Los Angeles, New York City, or Boston.

● Available users in any given area
○ Some areas may have more hosts than guests and vice versa. This ratio is

expected to vary, and there is not much that can be done about it. However,
regardless of the ratio, our app will still require hosts and guests. After all, it is
assumed that there will be a fair amount of hosts and guests available in most
areas.

● User compliance
○ In a perfect world, the individuals who will use our app will do so after reading

and agreeing to the terms and conditions. However, most users don’t read a
software product’s terms and conditions, they simply accept without fully
understanding what is being asked of them from the software. For example,
drivers are supposed to arrive and leave at a predetermined time agreed upon by
both parties. In the worst-case scenario, they leave their car for several days and
the host has to call a towing service to remove the car. On the other side, the
host may interact with the driver’s car in an undesired fashion when the driver is
away.

1.7 Expected End Product and Deliverables
The expected end product is a mobile application that is available on both Android and iOS, with
the possibility of a web application. The application should have the following deliverables:

1.7.1 Frontend Deliverables
● Users will be able to sign up, log in, and interact with the application
● Hosts will be able to create and view their listing, along with information about users that

are reserving their spaces and receive payments (through Stripe)

sddec20-20 9

● Guests will be able to view parking spot listings, reserve a parking spot, and send
payments to the host

1.7.2 Backend Deliverables
● A database that contains:

○ User credentials
■ SessionID and tokens will need to be provided to the user upon login
■ A list of vehicles the user owns (they may use multiple vehicles)
■ User payment information

○ Locations of available parking spaces with associated fees
○ Stripe API endpoints for payment

sddec20-20 10

2 Specifications and Analysis

2.1 Proposed Approach
As stated in the problem statement, when attending events, it can be very difficult to find parking
and at a reasonable rate. Thus, Parkour aims to provide a parking alternative where drivers can
pay to park their ride within the residential borders of a host’s living space, such as a driveway
or front yard. The app will be released as both an iOS and Android application and will feature
an intuitive, easy-to-use, simple UI so the users can worry more about a parking spot than a
cluttered home page.

After meeting with the client, the team received the research paper on which the application is
based. The only stipulation was that this project would be 100% software. A full list of
requirements is available in section 1.4. Additionally, see section 3.2 for more details on the
proposed technologies that will be utilized.

2.2 Design Analysis
The technology stack we will be using is the MERN stack. This stack includes MongoDB,
Express, React Native, and NodeJS.

2.2.1 Frontend
● React Native​: The team has chosen to develop the frontend using React Native, an

open-source mobile application framework. It is used to develop mobile applications for
Web, Android, iOS, and Microsoft’s Windows. It provides developers to access native
platform capabilities using React, a JavaScript library created and maintained by
Facebook.

● TypeScript:​ Developed and maintained by Microsoft. It is an open-source extension of
JavaScript with Types and runs on any OS or browser.

2.2.2 Backend
● Node w/ Express​: The team has chosen to develop the backend using Node.js because

it is a very popular backend language to run on servers. There are plenty of resources
for team members who are unfamiliar with Node and the Express library, a widely-used
web application framework for Node.

● Database​: The team has chosen to use MongoDB as the database because it is a
popular choice amongst Node.js and Express.js developers, and there exist many
resources and community support. Since it is also a cross-platform document-oriented
database program, it doesn’t rely at all on the manipulation of relational data such as
MySQL, which oftentimes presents a steep learning curve for developers.

sddec20-20 11

2.3 Development Process
Our group has chosen to follow the agile methodology as per the agile manifesto established in
2001. Routine meetings and frequent testing will be implemented for the application. This also
includes frequent collaboration with our client to ensure that his needs as a client are being met
and the timeline that he has set forth is being followed.

With the help of the agile methodology, we will cycle through a process of planning, executing,
and evaluating that includes continuous team and client collaboration to ensure that the final
version of every deliverable is as satisfactory as possible. As a team, we will most likely rely on
the agile process framework of Scrum which features frequent daily stand-ups and bi-weekly
sprints. Since the development of this application will not be done in the environment of a
standard paying 8-hour/day software company, stand-ups will be held a minimum of once per
week so everyone can get caught up and on the same page as everyone else. Sprints will be
roughly around one week to two weeks depending on the difficulty and size of the task at hand
so that there is ample opportunity to discuss our recent advancements with the client for any
immediate feedback.

2.4 Conceptual Sketch

Below are conceptual sketches for several different screens inside of the application. Since
these are conceptual these screens could change by the end of the project.

sddec20-20 12

Figure 1. Entry page Figure 2. Sign-up page Figure 3. Sign-in page

The above three figures compromise the proposed login process to Parkour. The user will
initially land on figure one and depending on if the user is new or not, will either go to figure two
to create an account or visit figure 3 to sign in with their existing account credentials.

sddec20-20 13

Figure 4: Home page of the app Figure 5: The drawer content for the app

Once the user logs in, they will initially land on a Google Map’s view with a pin dropped at their
exact location (after asking for permission, of course.) They can either tap the button to the left
opening up the drawer, tap the button to the right to return to their initial location, or use the
search bar at the top to find available listings within a 10-mile radius of the user’s destination.
Figure 5 contains the drawer content for a driver user. If a user is a host, there is a slightly
different set-up.

sddec20-20 14

Figure 6: Profile view for the current user Figure 7. Edit profile view for the current user

The above two figures are of the current user’s profile page. The left is the main view and the
right is the page they will travel to in order to make any necessary edits to their personal
information.

sddec20-20 15

Figure 8: Main vehicle page Figure 9: Edit vehicle page Figure 10: New vehicle page

The above three figures are for the current user’s vehicle page. The leftmost is a list of all the
vehicles the user has added, the middle is the page is for editing/removing any vehicle they
have added to their Parkour account, and the right most are the page they will land on when
they decide to add a new vehicle.

sddec20-20 16

Figure 11: New card entry page Figure 12: Parkour digital wallet page

The above two figures are for the user’s Parkour digital wallet. When a user is registered, they
will be giving a Stripe Customer ID so that they can maintain a digital wallet just for Parkour. A
regular user will use the default card (colored in figure two as green) they have saved to pay
hosts for parking, and hosts will use the wallets to collect payouts from drivers in addition to
paying other hosts for parking if they so choose.

sddec20-20 17

Figure 13: Host’s listings page Figure 14: Drawer content for Host

Figure 14 is the drawer content a registered host will see when they sign in to Parkour. The only
thing different compared to a regular user’s drawer content is the My Listings page. Hosts can
go to the page shown in figure 13 to see all the listings they have registered with Parkour that
are available for parking. They can then tap on said listings to edit any necessary information.

sddec20-20 18

Figure 15: New listing page for Host Figure 16: List of available listings

Figure 15 is the page hosts will see when they wish to add a new listing to their Parkour
account. The Rightmost figure is what all users can see as it is simply a list of all available
parking spots registered in the app as a whole. Users may visit this page to browse the
available parking spots or use the search bar on the home map page to search for a destination
and then be sent to the page in figure 16 to see available listings within a 10-mile radius of their
searched destination.

sddec20-20 19

Figure 17: Home page with a dropped pin showing the user’s destination

After a user searches for where they wish to drive, a blue pin will be dropped at their destination
for reference and they will be taken to the listings page to see all available listings within a
10-mile radius from their searched destination.

sddec20-20 20

3 Statement of Work

3.1 Previous Work and Literature
One similar iOS application in comparison to this project is Prked. This app was very similar to
our idea, but it was very barebones in terms of functionality. It was posted on the Apple App
Store at the very beginning of the spring semester. The application, despite frequent updates,
continues to be very buggy and is unusable at this point in time.

We are basing our project on the paper “Collaborative-Aware Intelligent Parking System for
Green and Smart Cities based IoT” that is written by our advisor. It has not been published yet
but describes the parking system as it relates to game theory and optimization.

3.2 Technology Considerations
Since the project will be made up of two separate mobile applications (iOS and Android), our
team wanted to find a technology solution that would enable us to create one application that
could be exported to be used on Android and iOS. Therefore, we will be using React Native to
develop the frontend. Ionic was also considered but React was ultimately chosen because of
the better performance, its popularity in corporate environments, and community-supported
codebase which features plenty of development resources and third-party libraries/frameworks.

The front end application will be connected to a single backend hosted on a web server. The
team has committed to the MERN stack as our base set of technologies, but we may use other
utilities and tools if necessary. Typescript is good for a large number of concurrent users for our
frontend. The backend will also be connected to a database to securely store information
needed for our application. The backend will be using NodeJS, MongoDB and Express as our
core tools for development.

3.3 Task Decomposition
Our project is divided into a mobile (frontend) application, paired with a backend server that we
will make requests to get user information and other stored data that might need to be stored in
a database. Since we will have two separate projects going, the team will split up and
simultaneously develop the front and backend.

3.3.1 Frontend Tasks
● Initialize the skeleton React-Native Project
● Sign up page

○ Establish a connection to the backend server
○ Make post request to the server to create user

sddec20-20 21

○ Receive a response from the server
■ In the form of User ID and Session ID

○ Create the user interface
● Login page

○ Make a post request to the backend server
○ Receive a response from the server

■ In the form of User ID and Session ID
○ Create the user interface

● Home Page
○ Create the user interface for the map screen the users first see after logging in

● Navigation Bar/Menu
○ Create the component that allows users to navigate the application quickly
○ Create placeholder links for all of the future pages that will be added to the

application
● Profile Page

○ Make a get request to the server to retrieve the user’s information
○ Receive a response from the server with the user info
○ Create the user interface for the profile page
○ Fill out the user page with the information
○ Add an edit profile link in the profile page

● Payment Page
○ Connect the application to the Stripe payment APIs
○ Create the user interface
○ Send post to the server to log the payment occurred

● Post Parking Space
○ Send post request to the server to store the new parking space
○ Receive a response from the server
○ Create the user interface to post a parking space

● List Available Parking Spaces
○ Send a get request to the server
○ Receive a response from the server
○ Create the user interface for the page
○ Display the spaces retrieved from the database

● Reserve Parking Space
○ Make a post request to the server to modify the number of spaces on the

backend
○ Receive a response from the server
○ Add a payment element to pay immediately
○ Create a user interface to reserve a parking space

● Show the Parking Spaces on a Map
○ Make a get request to the server to get available spots in the loaded area
○ Use a map API (Google Maps) to show the map
○ Plot the locations on the map
○ Provide directions to the selected parking location

sddec20-20 22

● Create optional settings

3.3.2 Backend Tasks
● Initialize a skeleton Node.js project
● Setup a database to be used with the project
● Connect the backend server to the database
● Create a user model to be used in the database

○ Include the obvious items such as username, email, password, first name,
password, phone number, jwt token, isVerified

○ Also include profile information
● Create a User Signup API endpoint in the backend

○ Create a POST new user API Route that will get triggered when a user signs up
on the frontend

○ Create JWT Token and send them to the frontend to store
○ Encrypt user information

● Create a User Sign in API endpoint in the backed
○ Create the needed GET, POST, PUT, DELETE requests
○ Decrypt and verify user login
○ Send back if the user successfully logged in

● Create a Receipt API
○ Create a model to store Receipt objects
○ Create the needed GET, POST, PUT, DELETE requests
○ Store the receipts in the database, link the receipts to users through their ids

● Create a model for the spot locations
○ Include address, and maybe coordinates

● Create a model for a listing
○ Include user that posted the listing
○ Include pricing and stipulation information
○ Include the location object

● Create the Parking API
○ Create the needed GET, POST, PUT, DELETE requests

● Create additional query options

3.3.3 Administrative/Misc Tasks
● 491

○ Biweekly and weekly reports (as requested by the advisor/client)
○ Publish Design Document Version 1
○ Publish Design Document Version 2
○ Publish Design Document Version 3

● 492
○ Biweekly and weekly reports
○ Prepare project poster

sddec20-20 23

○ Present the project
○ Create Final Report

3.4 Possible Risks and Risk Management
There are many risks associated with this application. An early risk was how to securely handle
payment information. We mitigated by deciding to use a third party API to set up payment
through a well-established company. Users will be given the option of using Stripe, which
supports Google Pay, Apple Pay, PayPal, Venmo, or Amazon Pay. This helps our consumers to
use a familiar payment method and it helps our team by not having to worry about huge security
risks.

The second big risk is the liability that is associated with involving vehicles. There will have to be
very strict language in our terms and agreements for users of the application to absolve us from
any fault if there is an accident or theft of service. Currently, instructions for owners are being
devised if, for whatever reason, a vehicle is left at their parking spot longer than the
agreed-upon time.

The next risk that our team has thought through is how to verify users. This would be to keep all
users accountable and safe while using our product. The plan is to ask for personal information
such as a driver's license number for the owners. We will also ask for the license plate number
and other identifying information about the car from the renters, so an owner can verify that the
correct vehicle is parked in the agreed-upon spot.

The last and most recent risk associated with this project is COVID-19. There is a lot of
uncertainty about how we will be able to communicate with the team as well as work on
documentation, development, and testing online. Currently, we all have access to the internet
for communication, but we will need to continue to work together to overcome any and all issues
that crop up during this project. Our plan was to test our prototype in the fall, but if the situation
persists then we may not be able to use our app alongside some events such as football
games. Events may be canceled due to COVID-19 health protocols. For the safety and health of
users, we will not be attempting to demo the application with a large user base. We were not
able to make the milestones past November 30th due to the shortened semester. We were able
to work ahead and finish up things that we planned to develop late November to early
December. Testing was not as in depth as possible due to running out of time.

sddec20-20 24

3.5 Project Proposed Milestones and Evaluation Criteria
Here is a list of milestones for our project:

sddec20-20 25

Proposed Milestone Checkpoint Date(s) Evaluation Criteria

Establish team roles
and expectations

January 16th The team has a set of clear expectations
and roles.

Requirements
Gathering

February 16th Full understanding of what our
application may need or potentially need
is fully understood. Minimize the need to
spend extra time researching further
technologies.

Present Project Plan
via presentation and
design document

March 8th Powerpoint slide that entails all required
details of our project. Design document
has a start on how everything will be
planned out.

Transition from
research to learning
respective
technologies

April 2nd Everybody has gone through some
tutorials regarding the project and did
further research if needed. Having a
basic familiarity with the
technology/language they intend to use
for development.

Finish User API
development

August-September The user has a functioning login system
and attributes are logged in the
database.

Delegate multiple tasks
and begin
implementing features

September 15th User API development is fixed, now can
begin implementing everything else.

Work on implementing
Maps API

October 9th Maps are integrated into the home
screen, and users can see locations on
the map. Users can publicly post their
locations on a global map.

Property Posting and
verification APIs
implemented

November 15th Properties are posted and APIs can
verify whether they are legitimate
properties or not.

Payment APIs working November 30th Hosts and guests should be able to
securely transfer payments between
each other and accurately keep track of
how much is being paid through Stripe.

Project Debugging December 9th The application will go through
automated and manual testing. The
application should not have any bugs or

Table 1: Proposed milestones

We may change or modify some of the dates or the order on how these tasks will be completed
as we see fit within the scope of our project.

3.6 Project Tracking Procedures
Our team will work in an agile environment to track our procedures. We meet weekly to discuss
what goals have been met and how the team is keeping up with the timetable that we have built
to finish all tasks in time. We divide work up into manageable weekly sprints to ensure high
morale and effective communication. Our team will be using GitLab tracking to manage our
progress throughout this project. We will be working with GitLab over other project tracking
systems because all team members are already familiar with how to use it.

3.7 Expected Results and Validation
Our application must be able to:

● Successfully allow a guest to download the app to their mobile phone.
● Allow said guests to either host or find nearby parking spaces via the app.
● Provide a reservation to the host saying the guest wishes to park at their location
● Allow the host to verify the guest and their identity and set certain guidelines for said

guest.
● Securely exchange and validate payment between host and guest through Stripe
● Automated Testing is successful

sddec20-20 26

issues and be dealt with during this
phase.

Prototype December 10th The working prototype of the application
and all of the existing features work as
expected. Hosts should be able to post
their properties and guests should be
allowed to make a reservation with the
host.

Final Presentation November 19th The application will be demoed and
ready for presentation. Other
presentation visuals such as PowerPoint
will be available.

4 Project Timeline, Estimated Resources, and
Challenges

4.1 Project Timeline
First, our team will do research on what technologies and options that are available to us. We
had the choice of either doing an API or building a new app from the ground up.

First Stage (January 2020 - March 2020)

● Familiarize team members with one another
● Work on Design Document
● Gather requirements
● Research technologies for frontend/backend

Second Stage (August 2020 - October 2020)

● Work on implementing application
● Create APIs on the backend for the app to interface with
● Create iOS and Android applications
● Connect MongoDB DBMS with backend server
● Establish a working connection between server and apps
● Implement all important features for applications

Third Stage (October 2020 - End of Project)

● Fix bugs and refactor code design
● Create a working prototype
● Recruit users for testing purposes
● Test application for football games in the fall
● Implement security features for server and applications
● Implement other miscellaneous features in applications
● Continue to improve reliability and efficiency of applications

Figure 18: Gantt chart for the schedule. On further review, the third stage was shorter due to a
shortened semester

sddec20-20 27

4.2 Feasibility Assessment
By December 2020, this project should be a full stack mobile application anyone can download
and use off of the Apple or GooglePlay store. The application’s frontend should be refined, easy
to use, and professional. The backend should process API calls quickly, and securely.

Realistically the team believes that all of the functional goals are attainable by the above date.
The team expects there could be issues with verifying homeowner’s identities and proving they
own the property they are listing, but large scale applications like Airbnb do not do this type of
check so the team will find a solution as more important function requirements are finished.

4.3 Personnel Effort Requirements

sddec20-20 28

Task Description Time (hours)

Research frontend and
backend technologies

The frontend technology
would need to allow for a fast,
high performing UI for a
mobile application. Our
backend will need to store
user and application data.

20+

Research payment options Payment processing and
handling options for users an

10

Come up with solutions for
handling user interactions

Handling interactions that
might pose as a liability, such
as parking for longer durations
than allocated.

30

Learn the respective
frontend/backend’s syntax,
framework, or language.

This will depend on individual
experience with the chosen
languages/frameworks we are
working with. Most of us may
not be familiar with these
languages, so we need to
familiarize ourselves with it
first.

20

Construct frontend UI Develop an easy to use UI for
the mobile app.

70

Construct backend server Develop a backend server that
would communicate with the
frontend and store user/app
data.

50

Frontend + Backend testing Ensure that frontend and 20

Table 2: Personnel Effort Requirements

4.4 Other Resource Requirements
No additional resources.

4.5 Financial Requirements
A few financial requirements include:

● Server costs
● Cost of publishing our app to the Google Play and App Store
● Verification + Google API costs

From an economic standpoint, the project will have to include the functionality to carry out
monetary transactions for the users of the two mobile applications. To facilitate these
transactions, all of which cost developers a small fee, integrations with popular payment options

sddec20-20 29

backend are both
communicating properly

Frontend and backend
debugging

Check for bugs within the
application.

40

Creating Virtual Machines
and configuring them with our
backend.

Setting up a virtual machine to
host our server. Configuring
and ensuring the backend
server works within the VM
with our frontend.

30

Deploying the VMs to a
hypervisor or managing VMs

The virtual machines will need
to be deployed to a
hypervisor.

5

Configuring the server(s) to
work with the virtual
machines

Once we finish finding the
servers and setting up the
virtual machines.

10+

Beta testing Testing of the application in
our local environment,
ensuring the behavior works.

30

Deploying the application to
the Google Play/App Store

Publishing the app could take
time, depending on how each
store processes their apps.

7-14 days

Live testing Once all the servers and
applications are deployed, we
can test it with a live group of
users if possible.

20

like PayPal will be needed. Also, the integration of software like Google Maps will eventually
cost us a small fee to use because more often than not, companies charge based on the
number of calls to their APIs. Second, the cost of publishing our app to the Google Play Store
for Android devices includes a one-time fee of $25. On the other hand, Apple charges a yearly
fee of $299 for a group of developers to publish their app to their App Store. Lastly, we will be
using servers for hosting purposes. For now, we are only concerned with hosting our product in
Iowa, so our server costs will be next to nothing. However, if we ever choose to expand our
scope to accompany other regions of the country and/or the world, we will be subjected to much
higher server costs.

sddec20-20 30

5 Testing and Implementation

5.1​ ​Interface Specifications
Since our project is software alone, we will have an iOS and Android application with a backend
server. We will have no hardware aspect of this project. Because of this, we do not have to
worry about hardware interfacing.

5.2​ ​Hardware and software
Our project is only software-based, because of this there are no required hardware
specifications. The team will be testing the frontend on Xcode and android studio, and the
backend will be tested using visual studio code with simple test cases.

5.3​ ​Functional Testing

5.3.1 Frontend
We will be using Jest for functional UI testing because it can help with testing TypeScript.
Additional testing to carry out similar tests that we would be doing using Mockito if we were
using Java. Because we are not using Java, we will use Jest for React framework testing.

5.3.2 Backend
On the backend, we will also be using Jest for backend API testing.

5.4​ ​Non-Functional Testing

5.4.1 Frontend
On the frontend, we will be using simple, manual user testing to test accessibility, how
user-friendly the app is, and its response time.

5.4.2 Backend
The main requirement the backend will be testing is the speed in which the backend
communicates with the frontend, and how long the backend takes to communicate with the
database. To test the speed of communication between the server and the frontend application,
as well as the speed of querying the database, we will set up automated tests similar to the
integration tests in section 5.3.2. In each of these tests, we will simply start a timer at the
beginning of each test, then mock an API call, or query the database. After the API call, or query
is complete the test will output the total time taken for the test, which we can analyze and
optimize if needed.

sddec20-20 31

5.5​ ​Process
Below is a simple flowchart that demonstrates our process on our testing plan.

Figure 19: Testing plan

Our testing plan follows the Test Driven Development software development process. In this
process, requirements for the project are broken down into different individual test cases. This is
so that everything that is created so far can be measurable. After this, code is redesigned for
each test case so that the test case passes. Once the developer does this for a number of
requirements, the tests are refactored and the process is completed again. This is so the tests
get more detailed and the code gets much more secure.

sddec20-20 32

5.6​ ​Results
Since we’re using React Native, we expect to have a high performing application that performs
on Android and iOS. The UI navigation should map to the proper pages and navigate to the
correct locations. The backend needs to properly store user data securely and efficiently within
a time period. Since we are using Stripe API to deal with transactions and payments, we don’t
expect to store sensitive data (i.e. credit card info) on our databases.

At a user level, the application should have a simple functioning login system where they can
register as a host or guest. Both users need to be able to switch between roles and have
different levels of permissions based on their roles. Some of the results we should see include:

The host should be able to:

● List their property and location on the map
● Manage and see the guests parked at their property
● See guest information, such as plate numbers, car models, names, etc
● Securely receive payment from guest users

The guest should be able to:

● View a list of ​verified​ hosts on a map
● Create a reservation for their parking spot
● Securely provide payment to the host through Stripe API

sddec20-20 33

6 Closing Material

6.1 Conclusion
Our project aims to reduce the stress of parking at big events such as fairs and concerts by
providing an alternative to both popular commercial parking apps by giving users the ability to
park on a host’s residential property instead of the hectic chaos of more populous areas such as
cities. To accomplish this goal, we are planning on developing a React Native mobile application
and deploy it to both the Google Play Store for Android and Apple’s App Store for iOS. For next
semester, we plan on developing new functional versions of the project through one-to-two
week sprints adhering to the Agile methodology framework of Scrum. Throughout these
one-to-two week sprints, we will keep up-to-date with one another through weekly online
stand-up meetings to ensure that every team member is on the same page with each other and
confident on the tasks that they must accomplish in any given sprint iteration. The project will
prove to be a success only through rigorous and ongoing integration between testing and
development to ensure a properly working deliverable after each sprint. Our ultimate end goal is
to develop an application that will provide to its users a different approach to modern parking
apps that will not only help reduce stress and save both money and time but will also help
strengthen the community bond between users.

6.2 References
[1] ​K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler, J.

Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin, S. Mellor,
K. Schwaber, J. Sutherland, and D. Thomas, “Manifesto for Agile Software
Development,” ​Manifesto for Agile Software Development​, 2001. [Online]. Available:
https://agilemanifesto.org/. [Accessed: 21-Apr-2020].

[2] “Collaborative-Aware Intelligent Parking System for Green and Smart Cities based IoT”. Adel

Mounir Said, Ahmed E. Kamal, and Hossam Afifi ​[Accessed: 31-Jan-2020]

[3] Jasra, “MERN Stack”, ​GeeksforGeeks​. [Online]. Available:

https://www.geeksforgeeks.org/mern-stack/. [Accessed Apr. 2020]

[4] MDN contributors, “JavaScript guidelines,” ​MDN Web Docs​, 08-Nov-2019. [Online].

Available: https://developer.mozilla.org/en-US/docs/MDN/Contribute/Guidelines/Code_
guidelines/JavaScript. [Accessed: 24-Apr-2020].

[5] “802.11-2016 - IEEE Standard for Information technology--Telecommunications and

information exchange between systems Local and metropolitan area networks--Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer

sddec20-20 34

(PHY) Specifications,” ​IEEE​. [Online]. Available:
https://standards.ieee.org/standard/802_11-2016.html. [Accessed: 24-Apr-2020].

[6] ​“802.21-2017 - IEEE Standard for Local and metropolitan area networks--Part 21: Media

Independent Services Framework,” ​IEEE​. [Online]. Available:
https://standards.ieee.org/standard/802_21-2017.html. [Accessed: 24-Apr-2020].

6.3 Appendices

6.3.1 Operations Manual
6.3.1.1 Prerequisites

To run the application on iOS, you must have a Mac that has the latest version installed along
with XCode installed. You will need to ensure that you have an iOS emulator installed within
XCode. You can download XCode from the Apple App Store. If you are on Windows, you will
need to ​set up a VM on iOS​ for Windows. Currently, Windows does not have XCode available
for download.

To run the application on Android, you will need to have ​Android Studio​ installed. You will need
to set system variables and have an emulator downloaded. Every system has different
configurations, so you will need to refer to the ​getting started guide​ created by the React Native
developers. This is the easiest way to set up the development environment in Windows. Mac
users can follow the same steps.
Once you have your chosen emulator(s) set up, you will need to install Visual Studio Code. This
software is completely free and runs on any operating system.

You will need to download the following dependencies, frameworks, and utilities in your project:

● NodeJS: ​https://nodejs.org/en/
● Express: ​https://expressjs.com/
● MongoDB: ​https://www.mongodb.com/
● Jest: ​https://jestjs.io/

There may be a few additional extensions you can install within VS code that may be helpful to
your development. It is not required but provides quality of life features.

To get the code, you will need to have a GitLab account, and you can access our repository
here: ​https://git.ece.iastate.edu/sd/sddec20-20

sddec20-20 35

https://smartface.io/ios-and-android-emulator-on-windows/
https://developer.android.com/studio
https://reactnative.dev/docs/environment-setup
https://nodejs.org/en/
https://expressjs.com/
https://www.mongodb.com/
https://jestjs.io/
https://git.ece.iastate.edu/sd/sddec20-20

Copy the clone with HTTPS link

Using ​git bash​, ​Linux for Windows subsystem​, or the terminal (on Linux/Mac), navigate to any
directory you wish to store the project in and run:

$ git clone https://git.ece.iastate.edu/sd/sddec20-20.git

This will provide a copy of our project to you. Within Visual Studio, click on ​File < Open <
sddec20-20​.

Open a terminal by clicking ​Terminal​, then ​New Terminal​. Within that terminal, you will need to
type in:

$ npm i

This will install all the packages and dependencies that are required to run this application. It
may take about 5-10 minutes to install. Now run:

$ cd server
$ npm run dev

This will start the server.

sddec20-20 36

https://gitforwindows.org/
https://docs.microsoft.com/en-us/windows/wsl/install-win10

You should see something like this:

Create a new terminal using the steps mentioned previously. Now, navigate to the frontend
folder:

$ cd ..
$ cd frontend

For iOS, you will need to install your pod repository (These contain dependencies specifically for
iOS, and you may need to install ​Ruby​ if needed):

$ cd ios
$ pod install

You will then begin downloading iOS dependencies.

For iOS run the app using:

$ npx react-native run-ios

For Android, type in:

$ npx react-native run-android

Your emulator will begin running and compiling. You can choose to sign in as an existing user or
create a new user if you do not have an account.

In order to connect to the server, you will need to create a .env file in your project. This helps
you automatically connect to the server without having to specify or constantly modify your IP
address within the code. Create two .env files in the frontend and backend.

A sample .env file for the frontend can be found below:

sddec20-20 37

https://www.ruby-lang.org/en/

REACT_APP_IP_ADDRESS=<YOUR IP ADDRESS HERE>
API_KEY=<API KEY GOES HERE>

Below is the contents of the .env file for the backend: (This IP is our server)
DB_IP=10.24.84.169

For API documentation, please visit ​this link​. (You may need a Postman account)

6.2 Alternative/other initial versions of the design

Another alternative solution was using Flutter, which is Google’s UI toolkit for building
applications. This toolkit uses the Dart programming language, while React Native uses
JavaScript. Our team, however, was not familiar with Flutter and it still left us to choose what
database and other technologies that are needed. Flutter was similar to React Native since it
allowed development for one platform.

Developing separately on Android Studio and XCode (iOS) was another consideration our team
had. We chose not to develop this way simply because only two of our team members owned a
Mac for iOS development. Having to concurrently do development and keep everything
consistent between two different platforms would be time-consuming.

While doing research, we felt that the MERN stack fit our needs best. It is a commonly used set
of technologies that are used within mobile development, and it includes frontend/backend
needs. Some of our members already had a good understanding of JavaScript and React from
other courses, side projects, and internships.

An initial plan for Stripe Integration was to use their pre-built UI components that could take care
of having a user add a new card to their wallet, assist them through checkout, and onboard a
host. However, what we failed to realize upon choosing Stripe as our preferred solution for
payment integration was that pre-built React web components do not play nicely with React
Native. React web components require a Node.js runtime environment and while we had that in
the backend, we did not have an environment for web components on the frontend. This
realization and our subsequent solution to build out these components ourselves pushed us
back quite a few pegs and slowed down our development speed by having to create a great
deal of components and screens that we initially didn’t plan on building. In addition to building all
new components for our React Native frontend, we moved all Stripe API calls to our backend
and made our own endpoints for each Stripe call. This way, the API calls would be coming from
a Node environment and be communicating return data with a frontend that won’t crash due
from having non-native UI views.

sddec20-20 38

https://parkour.postman.co/apis/aaeb68c0-00c3-4933-8eb4-ab5328138e3b?version=14c324de-b07d-4585-b396-ddf19580decb&workspace=1edb9226-dc19-4e1e-8a5e-0dca22ef7bb0

6.3 Other considerations

COVID-19 heavily affected our ability to test our application on a large scale. Initially, our plan
was to test our application with a large user base during an event at Iowa State University (such
as the football game). We wanted how the interaction between posting and reserving parking
would work, along with our payment. To combat this, we ended up using Jest for automated
testing. We may need to do more extensive manual testing in order to see how our application
performs. Features such as user verification, and property verification may need to be cut out.
While we do want to have a high level of responsibility and accountability between users, we will
need to cut out some features that enforce this. The time we have for developing this application
may not suffice for all our needs, so we will focus more on testing and the core functionalities of
the application.

sddec20-20 39

